RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2021 Volume 66, Issue 4, Pages 718–733 (Mi tvp5498)

This article is cited in 2 papers

Chebyshev-type inequalities and large deviation principles

A. A. Borovkov, A. V. Logachov, A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: Let $\xi_1,\xi_2,\dots$ be a sequence of independent copies of a random variable (r.v.) $\xi$, ${S_n=\sum_{j=1}^n\xi_j}$, $A(\lambda)=\ln\mathbf{E}e^{\lambda\xi}$, $\Lambda(\alpha)=\sup_\lambda(\alpha\lambda-A(\lambda))$ is the Legendre transform of $A(\lambda)$. In this paper, which is partially a review to some extent, we consider generalization of the exponential Chebyshev-type inequalities $\mathbf{P}(S_n\geq\alpha n)\leq\exp\{-n\Lambda(\alpha)\}$, $\alpha\geq\mathbf{E}\xi$, for the following three cases: I. Sums of random vectors, II. stochastic processes (the trajectories of random walks), and III. random fields associated with Erdős–Rényi graphs with weights. It is shown that these generalized Chebyshev-type inequalities enable one to get exponentially unimprovable upper bounds for the probabilities to hit convex sets and also to prove the large deviation principles for objects mentioned in I–III.

Keywords: exponential Chebyshev-type inequality, large deviation principle, local large deviation principle, random walk, random field, Erdős–Rényi graphs.

Received: 12.05.2021
Accepted: 10.08.2021

DOI: 10.4213/tvp5498


 English version:
Theory of Probability and its Applications, 2022, 66:4, 570–581

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024