RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2023 Volume 68, Issue 2, Pages 277–300 (Mi tvp5503)

Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph

M. V. Platonovaab, K. S. Ryadovkinab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics

Abstract: We consider a continuous-time supercritical symmetric branching random walk on a multidimensional graph with periodic particle generation sources. A logarithmic asymptotic formula is obtained for the moments of population sizes of particles at each vertex of the graph as ${t\to\infty}$.

Keywords: branching random walk, periodic perturbation, evolution equation.

Received: 30.05.2021
Revised: 20.01.2022

DOI: 10.4213/tvp5503


 English version:
Theory of Probability and its Applications, 2023, 68:2, 231–249

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024