RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2024 Volume 69, Issue 3, Pages 611–628 (Mi tvp5551)

Convergence rate for randomly weighted sums of random variables and its application

Y. Wua, X. J. Wangb

a School of Big Data and Artificial Intelligence, Center of Applied Mathematics, Chizhou University, Chizhou, P. R. China
b School of Big Data and Statistics, Anhui University, Hefei, P. R. China

Abstract: Let $\{X,X_n,\, n\geq1\}$ be a sequence of identically distributed negatively superadditive-dependent random variables, and let $\{A_{ni},\, 1\leq i\leq n,\, n \!\geq\! 1\}$ be an array of negatively supperadditive-dependent random weights. Under the almost optimal moment conditions, we show that for any $\varepsilon>0$, $\sum_{n=1}^{\infty}n^{-1}\mathbf{P}\bigl(\max_{1\leq m\leq n} \bigl| \sum_{i=1}^mA_{ni}X_i\bigr|>\varepsilon n^{1/\alpha}\ln^{1/\gamma}n\bigr) <\infty$, where $0<\gamma<\alpha\leq2$, and that for any $0<q<\alpha$, $\sum_{n=1}^{\infty}n^{-1}\mathbf E\bigl(n^{-1/\alpha}\ln^{-1/\gamma}n\max_{1\leq m\leq n} \bigl| \sum_{i=1}^mA_{ni}X_i\bigr|-\varepsilon\bigr)_+^q<\infty$. The main results obtained here extend and improve the corresponding ones in the literature. As an application, a new result on the strong law of large numbers for the random weighting estimation of sample mean is provided.

Keywords: convergence rate, randomly weighted, negatively superadditive-dependent, strong law of large numbers, sample mean.

Received: 01.02.2022
Accepted: 15.03.2022

DOI: 10.4213/tvp5551


 English version:
Theory of Probability and its Applications, 2024, 69:3, 488–502

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025