Abstract:
Let $\{X,X_n,\, n\geq1\}$ be a sequence of identically distributed negatively
superadditive-dependent random variables, and let $\{A_{ni},\,
1\leq i\leq n,\, n \!\geq\! 1\}$ be an array of negatively
supperadditive-dependent random weights. Under the almost optimal
moment conditions, we show that for any $\varepsilon>0$,
$\sum_{n=1}^{\infty}n^{-1}\mathbf{P}\bigl(\max_{1\leq m\leq n} \bigl|
\sum_{i=1}^mA_{ni}X_i\bigr|>\varepsilon n^{1/\alpha}\ln^{1/\gamma}n\bigr)
<\infty$, where $0<\gamma<\alpha\leq2$, and that for any $0<q<\alpha$,
$\sum_{n=1}^{\infty}n^{-1}\mathbf
E\bigl(n^{-1/\alpha}\ln^{-1/\gamma}n\max_{1\leq m\leq n} \bigl|
\sum_{i=1}^mA_{ni}X_i\bigr|-\varepsilon\bigr)_+^q<\infty$. The main results
obtained here extend and improve the corresponding ones in the literature. As
an application, a new result on the strong law of large numbers for the
random weighting estimation of sample mean is provided.
Keywords:convergence rate, randomly weighted, negatively superadditive-dependent, strong law of large numbers, sample mean.