RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2023 Volume 68, Issue 1, Pages 75–92 (Mi tvp5573)

This article is cited in 2 papers

On the number of trees of a given size in a Galton–Watson forest in the critical case

E. V. Khvorostyanskaya

Institute of Applied Mathematical Research of the Karelian Research Centre RAS, Petrozavodsk

Abstract: We consider a critical Galton–Watson branching process starting with $N$ particles and such that the number of offsprings of each particle is distributed as $p_k=(k+1)^{-\tau}-(k+2)^{-\tau}$, $k=0,1,2,\dots$ . For the corresponding Galton–Watson forest with $N$ trees and $n$ nonroot vertices, we find the limit distributions for the number of trees of a given size as $N,n \to \infty$, $n/ N^{\tau}\geq C>0$.

Keywords: Galton–Watson forest, number of trees of a given size, limit distribution.

Received: 06.05.2022
Revised: 06.09.2022
Accepted: 06.09.2022

DOI: 10.4213/tvp5573


 English version:
Theory of Probability and its Applications, 2023, 68:1, 62–76

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025