RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2023 Volume 68, Issue 3, Pages 619–629 (Mi tvp5626)

A weak law of large numbers for dependent random variables

I. Karatzasa, W. Schachermayerb

a Departments of Mathematics and Statistics, Columbia University, New York, NY, USA
b Faculty of Mathematics, University of Vienna, Vienna, Austria

Abstract: Each sequence $f_1,f_2,\dots$ of random variables satisfying $\lim_{M\to \infty}(M\sup_{k\in \mathbf N}\mathbf{P}(|f_k|>M))=0$} contains a subsequence $f_{k_1},f_{k_2},\dots$ which, along with all its subsequences, satisfies the weak law of large numbers $\lim_{N\to\infty}\bigl((1/N) \sum^N_{n=1} f_{k_n}- D_N\bigr)=0$ in probability. Here, $D_N$ is a “corrector” random variable with values in $[-N,N]$ for each $N\in\mathbf{N}$; these correctors are all equal to zero if, in addition, $\lim \inf_{n\to\infty}\mathbf{E}(f^2_n \mathbf{1}_{\{|f_n|\le M\}})=0$ for every $M\in(0,\infty)$.

Keywords: weak law of large numbers, hereditary convergence, weak convergence, truncation, generalized expectation, nonlinear expectation.

Received: 06.01.2023
Accepted: 06.01.2023

DOI: 10.4213/tvp5626


 English version:
Theory of Probability and its Applications, 2023, 68:3, 501–509

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024