RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2025 Volume 70, Issue 1, Pages 29–44 (Mi tvp5694)

Approximation of sums of locally dependent random variables via perturbations of Stein operator

Zh. Sua, V. V. Ulyanovbc, S. Wana

a School of Mathematical Sciences, Zhejiang University, Hangzhou, China
b Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
c National Research University Higher School of Economics, Moscow

Abstract: Let $(X_i,\, i\in J)$ be a family of locally dependent nonnegative integer-valued random variables (r.v.'s), and consider a sum $W=\sum_{i\in J}X_i$. Applying the Stein method, we prove an upper bound for total variation distance $d_{\mathrm{TV}}(W, M)$, where an approximating r.v. $M$ has the distribution, which is a mixture of Poisson distribution with either binomial or negative binomial distribution. As a corollary of general results, we get approximation errors of order $O(|J|^{-1})$ for the distributions of ($k_1,k_2$)-runs and $k$-runs. The results obtained are significantly better than the previously known estimates, e.g., $O(|J|^{-0.5})$ [E. Peköz, A. Röllin, and N. Ross, Bernoulli, 19 (2013), pp. 610–632] and $O(1)$ [N. Upadhye, V. Čekanavičius, and P. Vellaisamy, Bernoulli, 23 (2017), pp. 2828–2859].

Keywords: local dependence structure, Stein's method, total variation distance, $(k_1,k_2)$-runs.

Received: 22.12.2023
Revised: 14.10.2024

DOI: 10.4213/tvp5694


 English version:
Theory of Probability and its Applications, 2025, 70:1, 24–36


© Steklov Math. Inst. of RAS, 2025