RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2025 Volume 70, Issue 1, Pages 3–28 (Mi tvp5724)

A branching process in a random environment, starting with a large number of particles

V. I. Afanasyev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: Let $Z^{(k)}=\{ Z_i^{(k)},\, i=0,1,\dots\}$, $k=1,2,\dots$, be a sequence of critical branching processes in random environment, which differ from one another only in the population size $k$ of the initial generation. Suppose that the variance $\sigma^2$ of the step of the associated random walk is finite and positive. We fix $x\in (0,+\infty)$ and define $Z^{(n,x)}=Z^{(m_n(x))}$, where $m_1(x),m_2(x),\dots$ is a sequence of natural numbers, and $\ln m_n(x) \sim \sigma \sqrt{n}\, x$ as $n\to\infty$. We prove limit theorems on the extinction moment of the process $Z^{(n,x)}$, on the time-continuous normalized process constructed from $Z^{(n,x)}$, and on the normalized logarithm of the process $Z^{(n,x)}$.

Keywords: critical branching process in random environment, limit theorem, functional limit theorem.

Received: 19.05.2024
Revised: 23.09.2024
Accepted: 30.10.2024

DOI: 10.4213/tvp5724


 English version:
Theory of Probability and its Applications, 2025, 70:1, 1–23

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025