RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1999 Volume 44, Issue 1, Pages 229–232 (Mi tvp621)

This article is cited in 2 papers

Short Communications

Necessary conditions for stable convergence of semimartingales

E. Mordecki

Universidad de la República, Uruguay

Abstract: We prove an inverse to a theorem on stable convergence of semimartingales due to Feigin [Stochastic Process. Appl., 19 (1985), pp. 125–134]. As a consequence, it can be stated (under some control in the jumps) that a sequence of martingales $X^n$ converges stably to a continuous martingale $X$ with conditionally independent increments if and onlyif the quadratic variations of $X^n$ converge in probability to the quadratic variation of $X$ for each $t \in\mathbf{R}^+$.

Keywords: semimartingale, stable convergence, independent increments.

Language: English

DOI: 10.4213/tvp621


 English version:
Theory of Probability and its Applications, 2000, 44:1, 217–221

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024