RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1967 Volume 12, Issue 4, Pages 595–618 (Mi tvp749)

This article is cited in 29 papers

Existence and continuity of pressure in classic statistical physics

R. L. Dobrushina, R. A. Minlos

a Moscow

Abstract: Let $U(y)$ be a potential such that
\begin{gather*} U(y)\ge\psi(y),\quad0\le y\le a,\quad\psi(y),\ y^r\to\infty,\quad y\to0, \\ |U(y)|\le C|y|^{-(r+\varepsilon)},\quad y>a,\quad\varepsilon>0,\quad C<\infty \end{gather*}
where $\psi(y)$ is a monotone function. Let $\frac{|\Omega_N|}N\to v$, $0<v<\infty$, where $|\Omega_N|$ is the volume of an $r$-dimensional cube $\Omega_N$, and put
$$ f(v,\beta)=\lim_{N\to\infty}\frac1N\ln\int_{\Omega_N}\dots\int_{\Omega_N}\exp\biggl\{-\beta\sum_{i\ne j}U(|x_i-x_j|)\biggr\}dx_1\dots dx_N. $$
It is proved that $\frac{\partial f(v,\beta)}{\partial v}$ exists and is continuous.

Received: 28.06.1966


 English version:
Theory of Probability and its Applications, 1967, 12:4, 535–559

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024