RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1999 Volume 44, Issue 3, Pages 526–554 (Mi tvp802)

This article is cited in 11 papers

Estimation problems for coefficients of stochastic partial differential equations. Part II

I. A. Ibragimova, R. Z. Khas'minskiib

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Wayne State University, USA

Abstract: As in Part I (see [I. A. Ibragimov and R. Z. Khas'minskii, Theory Probab. Appl., 43 (1999), pp. 370–387]), we consider the problem of estimation of functional parameters $a_k(t,x),\theta(t,x)$ by observing a solution $u_\varepsilon(t,x)$ of a stochastic partial differential equation
$$ du_\varepsilon(t)=\sum_{|k|\le 2p}a_kD_x^ku_\varepsilon+\theta\,dt+\varepsilon\,dw(t), $$
where $w(t)$ is a Wiener process. We investigate problems of the existence of consistent estimates for $\theta$ and their rate of convergence to $\theta$ dependent on properties of the functional class $\Theta$, which a priori contains $\theta$.

Keywords: inverse problems, stochastic differential equations, statistical estimation, nonparametric estimating problems.

Received: 09.12.1997

DOI: 10.4213/tvp802


 English version:
Theory of Probability and its Applications, 2000, 44:3, 469–494

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025