RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1968 Volume 13, Issue 3, Pages 542–548 (Mi tvp889)

This article is cited in 7 papers

Short Communications

Limit theorems in a model of the arrangement of paticles of two types

T. Yu. Popova

Moscow

Abstract: Particles of two types are thrown independently into $N$ cells. A particle of the kth type gets into the ith cell with a probability $a_i^k$, $k=1,2$, $i=1,\dots,N$. Denote by $\mu_0^{(k)}(n_k)$ the number of cells which contain no particles of type $k$ ($k=1,2$) and by $\mu_0^3(n_1+n_2)$ the number of cells which contain no particles at all. In this paper some limit theorems for $\mu_0^{(1)}(n_1)$, $\mu_0^{(2)}(n_2)$ and $\mu_0^{(3)}(n_1+n_2)$ are proved.

Received: 20.12.1966


 English version:
Theory of Probability and its Applications, 1968, 13:3, 511–516

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024