RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1968 Volume 13, Issue 4, Pages 738–742 (Mi tvp931)

This article is cited in 17 papers

Short Communications

On the problem of the stability of the decomposition of the normal law into components

V. M. Zolotarev

V. A. Steklov Mathematical Institute, USSR Academy of Sciences

Abstract: The following theorem is proved: Let $\Phi$ be the distribution function of $N(0,1)$, $L$ the Levy metric and $F=F_1*F_2$ a distribution function such that
$$ L(F,\Phi)\le\varepsilon<1. $$
Then, there can be found a normal distribution $\Phi_1$ such that
$$ C_1\biggl(\log\frac1\varepsilon\biggr)^{-1/2}<L(F_1,\Phi_1)<C_2\biggl(\log\frac1\varepsilon\biggr)^{-1/11}, $$
where $C_1$ and $C_2$ are positive constants.

Received: 12.03.1968


 English version:
Theory of Probability and its Applications, 1968, 13:4, 697–700

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025