RUS  ENG
Full version
JOURNALS // Teplofizika vysokikh temperatur // Archive

TVT, 2001 Volume 39, Issue 1, Pages 115–122 (Mi tvt1863)

Heat and Mass Transfer and Physical Gasdynamics

Supersonic flow of viscous gas in a flat channel at high values of the Reynolds number

V. A. Bashkin, I. V. Egorov, D. V. Ivanov

Central Aerohydrodynamic Institute, Zhukovskii

Abstract: Based on numerical analysis of two-dimensional Reynolds equations using the differential model of turbulence, the structure of flow field and aerodynamic characteristics of a flat channel with variable cross section at the inlet Mach number of four is investigated in the range of Reynolds numbers $\mathrm{Re}=10^5-10^7$. According to the calculation results, the interaction between a shock and a laminar boundary layer results in the emergence of a closed separation zone. During interaction with a turbulent boundary layer, two flow schemes are possible, depending on the intensity of incident shock, namely, without and with separation. The extrapolation of calculation data to nonviscous flow (limiting transition $\mathrm{Re}\to\infty$) shows that the classical scheme of regular reflection of the shock from a flat surface corresponds to interaction without separation. Corresponding to interaction with separation is the flow scheme with formation of a small closed separation zone in which a subsonic circulation flow takes place.

UDC: 533.6.011.8

Received: 01.07.1999


 English version:
High Temperature, 2001, 39:1, 111–118


© Steklov Math. Inst. of RAS, 2024