RUS  ENG
Full version
JOURNALS // Teplofizika vysokikh temperatur // Archive

TVT, 2001 Volume 39, Issue 5, Pages 777–783 (Mi tvt1976)

This article is cited in 2 papers

Heat and Mass Transfer and Physical Gasdynamics

Simulation of the process of water freezing in a round pipe

P. T. Zubkov, V. A. Kravchenko, E. M. Sviridov

Surgut State University

Abstract: The problem of freezing of pure water in a round pipe is treated with due regard for convection under asymmetric thermal boundary conditions in the absence of motion along the pipe. The problem is solved numerically using the control volume approach, SIMPLER algorithm, and the enthalpy method. Results are obtained for three Grashof ($\mathrm{Gr}$) and six Biot ($\mathrm{Bi}$) numbers: $\mathrm{Gr}=1.55\times10^6$, $\mathrm{Bi}=0.305$ $(0\le\varphi<\pi)$, $\mathrm{Bi}=0.044$ $(\pi\le\varphi<2\pi)$; $\mathrm{Gr}=1.24\times10^7$, $\mathrm{Bi}=0.610$ $(0\le\varphi<\pi)$, $\mathrm{Bi}=0.087$ $(\pi\le\varphi<2\pi)$; $\mathrm{Gr}=9.89\times10^7$, $\mathrm{Bi}=1.220$ $(0\le\varphi<\pi)$, $\mathrm{Bi}=0.174$ $(\pi\le\varphi<2\pi)$. The correctness of calculation of the problem disregarding free-convection flows is analyzed.

UDC: 541.18

Received: 29.08.2000


 English version:
High Temperature, 2001, 39:5, 722–728


© Steklov Math. Inst. of RAS, 2024