RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2011 Volume 3, Issue 3, Pages 105–119 (Mi ufa106)

This article is cited in 4 papers

The singular Sturm–Liouville operators with nonsmooth potentials in a space of vector functions

K. A. Mirzoeva, T. A. Safonovab

a M. V. Lomonosov Moscow State University, Moscow, Russia
b Nothern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk, Russia

Abstract: This paper deals with the Sturm-Liouville operators generated on the semi-axis by the differential expression $l[y]=-(y'-Py)'-P(y'-Py)-P^2y$, where $'$ is a derivative in terms of the theory of distributions and $P$ is a real-valued symmetrical matrix with elements $p_{ij}\in L^2_{loc}(R_+)$ ($i,j=1,2,\dots,n$). The minimal closed symmetric operator $L_0$ generated by this expression in the Hilbert space $\mathcal L^2_n(R_+)$ is constructed. Sufficient conditions of minimality and maximality of deficiency numbers of the operator $L_0 $ in terms of elements of a matrix $P$ are presented. Moreover, it is established, that the condition of maximality of deficiency numbers of the operator $L_0 $ (in the case when elements of the matrix $P$ are step functions with an infinite number of jumps) is equivalent to the condition of maximality of deficiency numbers of the operator generated by a generalized Jacobi matrix in the space $l^2_n$.

Keywords: quasi-derivative, Sturm–Liouville operator, singular potential, distributions, generalized Jacobi matrices, deficiency numbers, deficiency index.

UDC: 517.983.35+517.983.3

Received: 14.07.2011



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024