RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2011 Volume 3, Issue 3, Pages 127–139 (Mi ufa108)

This article is cited in 8 papers

On estimate of eigenfunctions of the Steklov-type problem with a small parameter in the case of a limit spectrum degeneration

V. A. Sadovnichiia, A. G. Chechkinab

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
b The State Uneversity of the Ministry of Finance of the Russian Federation, Moscow, Russia

Abstract: We consider a Steklov-type problem with rapidly alternating boundary conditions (Dirichlet and Steklov) in a bounded two-dimensional domain. The parts of the boundary, where the Dirichlet boundary condition are given, have the length of the order $\varepsilon$ and they alternate with parts of the length of the same order, having the Steklov condition. We prove that the normalized eigenfunctions for a sufficiently small $\varepsilon$ satisfy the Friedrichs-type inequality with the constant of the order $\varepsilon$ and moreover, they converge to zero as $\varepsilon$ tends to zero.

Keywords: spectrum of operator, Steklov-type problem, homogenization, asymptotics.

UDC: 517.91

Received: 26.07.2011



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025