RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2012 Volume 4, Issue 1, Pages 122–135 (Mi ufa138)

The angular distribution of zeros of random analytic functions

M. P. Maholaa, P. V. Filevychb

a Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, NAS Ukraine, L'viv, Ukraine
b L'viv National University of Veterinary Medicine and Biotechnology, L'viv, Ukraine

Abstract: It is proved, that for the majority (in the sense of probability measure) of functions $f$, analytic in the unit disk with unbounded Nevanlinna characteristic $T_f(r)$, and for all $\alpha<\beta\le\alpha+2\pi$ the relation
$$ N_f(r,\alpha,\beta,0)\sim\frac{\beta-\alpha}{2\pi}T_f(r),\quad r\to1, $$
holds, where $N_f(r,\alpha,\beta,0)$ is the integrated counting functions of zeros of $f$ in the sector $\{z\in\mathbb C\colon\ 0<|z|\le r,\ \alpha\le\arg_\alpha z<\beta\}$. The analogous proposition is obtained for entire functions under some conditions on their growth.

Keywords: analytic function, random analytic function, distribution of zeros, counting function, integrated counting function, Nevanlinna characteristic.

UDC: 517.53

Received: 18.11.2011



© Steklov Math. Inst. of RAS, 2024