RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2013 Volume 5, Issue 1, Pages 3–10 (Mi ufa182)

This article is cited in 1 paper

Compactness criterion for fractional integration operator of infinitesimal order

A. M. Abylayeva, A. O. Baiarystanov

L. N. Gumilev Eurasian National University, Astana

Abstract: We obtain necessary and sufficient conditions of compactness for the operator
$$Kf(x)=\int\limits_{0}^{x}\ln\frac{x}{x-s}\frac{f(s)}{s}ds$$
from $L_{p,v}$ in $L_{q,u}$ at $1<p\leq q<\infty$ and $v(x)=x^{-\gamma}$, $\gamma>0$, where $L_{q,u}$ is the set of all measurable on $(0, \infty)$ functions $f$ with finite norm $\|uf\|_{q}$.

Keywords: compactness, fractional integration operator, Riemann–Liouville operator, singular operator, adjoint operator, Holder inequality, weighted inequalities.

UDC: 517.518

Received: 23.12.2011


 English version:
Ufa Mathematical Journal, 2013, 5:1, 3–10

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025