RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2013 Volume 5, Issue 2, Pages 132–141 (Mi ufa203)

This article is cited in 9 papers

Completeness and minimality of systems of Bessel functions

B. V. Vynnyts'kyi, R. V. Khats'

Institute of Physics, Mathematics and Informatics, Ivan Franko Drohobych State Pedagogical University, 3 Stryiska Str., 82100 Drohobych, Ukraine

Abstract: We find the necessary and sufficient conditions for the completeness and minimality in the space $L^2(0;1)$ of system $(\sqrt{x\rho_k}J_{\nu}(x\rho_k):k\in\Bbb N)$ generated by Bessel function of the first kind of index $\nu\ge -1/2$. Moreover, we establish a criterion for the completeness and minimality of system $(x^{-2}\sqrt{x\rho_k}J_{3/2}(x\rho_k):k\in\Bbb N)$ in the space $L^2((0;1);x^2 dx)$.

Keywords: Paley–Wiener theorem, Bessel function, entire function, complete system, minimal system, biorthogonal system, basis.

UDC: 517.5

MSC: 33C10, 30B60, 42A65, 42A38, 30D20, 42B10, 44A15, 30E15

Received: 30.01.2012

Language: English


 English version:
Ufa Mathematical Journal, 2013, 5:2, 131–141

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025