Abstract:
In the work we consider a topological module $\mathcal P$ of entire functions, which is the isomorphic image under the Fourier–Laplace transform of Schwarz space $\mathcal E'$ of distributions compactly supported in a finite or infinite interval $(a;b)\subset\mathbb R$. We study some properties of closed submodules in module $\mathcal P$ related with local description problem. We also study issues on duality between closed submodules in $\mathcal P$ and subspaces in the space $\mathcal E=C^\infty(a;b)$ invariant w.r.t. the differentiation.
Keywords:entire functions, Fourier–Laplace transform, local description of submodules, invariant subspaces, spectral synthesis, finitely generated submodules.