RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2014 Volume 6, Issue 4, Pages 102–110 (Mi ufa263)

This article is cited in 3 papers

Spectral properties of two particle Hamiltonian on one-dimensional lattice

M. E. Muminovab, A. M. Khurramova

a A. Navoi Samarkand State University, Samarkand, Uzbekistan
b Faculty of Sains, Universiti Teknologi Malaysia (UTM), Skudai, 81310, s. Johor, Malaysia

Abstract: We consider a system of two arbitrary quantum particles on a one-dimensional lattice with special dispersion functions (describing site-to-site particle transport), where the particles interact by a chosen attraction potential. We study how the number of eigenvalues of the family of the operators $h(k)$ depends on the particle interaction energy and the total quasimomentum $k\in\mathbb T$ (where $\mathbb T$ is a one-dimensional torus). Depending on the particle interaction energy, we obtain conditions for existence of multiple eigenvalues below the essential spectrum of operator $h(k)$.

Keywords: two-particle Hamiltonian on one dimensional lattice, eigenvalue, multiple eigenvalue.

UDC: 517.984

MSC: 44A55, 81Q10

Received: 30.01.2014


 English version:
Ufa Mathematical Journal, 2014, 6:4, 99–107

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024