RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2016 Volume 8, Issue 3, Pages 8–21 (Mi ufa322)

This article is cited in 4 papers

On $2$-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis

N. F. Abuzyarova

Bashkir State University, Ufa

Abstract: In the work we consider a topological module $\mathcal P(a;b)$ of entire functions, which is the isomorphic image of the Schwarz space of distributions with compact supports in a finite or infinite interval $(a;b)\subset\mathbb R$ under the Fourier–Laplace transform. We prove that each weakly localizable module in $\mathcal P (a;b)$ is either generated by its two elements or is equal to the closure of two submodules of special form. We also provide dual results on subspaces in $C^\infty(a;b)$ invariant w.r.t. the differentiation operator.

Keywords: entire functions, subharmonic functions, Fourier–Laplace transform, finitely generated submodules, description of submodules, local description of submodules, invariant subspaces, spectral synthesis.

UDC: 517.538.2+517.984.26+517.547

MSC: 30D15, 30H99, 42A38, 47E05

Received: 31.05.2016


 English version:
Ufa Mathematical Journal, 2016, 8:3, 8–21

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025