RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2017 Volume 9, Issue 1, Pages 18–28 (Mi ufa362)

This article is cited in 5 papers

On deficiency index for some second order vector differential operators

I. N. Braeutigama, K. A. Mirzoevb, T. A. Safonovaa

a Northern (Arctic) Federal University named after M. V. Lomonosov, Severnaya Dvina Emb. 17, 163002, Arkhangelsk, Russia
b Lomonosov Moscow State University, Leninskie Gory, 1, 119991, Moscow, Russia

Abstract: In this paper we consider the operators generated by the second order matrix linear symmetric quasi-differential expression
$$ l[y]=-(P(y'-Ry))'-R^*P(y'-Ry)+Qy $$
on the set $[1,+\infty)$, where $P^{-1}(x)$, $Q(x)$ are Hermitian matrix functions and $R(x)$ is a complex matrix function of order $n$ with entries $p_{ij}(x),q_{ij}(x),r_{ij}(x)\in L^1_{loc}[1,+\infty)$ ($i,j=1,2,\dots,n$). We describe the minimal closed symmetric operator $L_0$ generated by this expression in the Hilbert space $L^2_n[1,+\infty)$. For this operator we prove an analogue of the Orlov's theorem on the deficiency index of linear scalar differential operators.

Keywords: quasi-derivative, quasi-differential expression, minimal closed symmetric differential operator, deficiency numbers, asymptotic of the fundamental system of solutions.

UDC: 517.984

MSC: 34A30, 34L05, 47E05

Received: 24.05.2016


 English version:
Ufa Mathematical Journal, 2017, 9:1, 18–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024