RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2017 Volume 9, Issue 1, Pages 29–41 (Mi ufa363)

This article is cited in 6 papers

Symmetries and exact solutions of a nonlinear pricing options equation

M. M. Dyshaeva, V. E. Fedorovab

a Chelyabinsk State University, Br. Kashirinykh st. 129, 454001, Chelyabinsk, Russia
b South Ural State University (National Research University), Lenin av., 76, 454080, Chelyabinsk, Russia

Abstract: We study the group structure of the Schönbucher–Wilmott equation with a free parameter, which models the pricing options. We find a five-dimensional group of equivalence transformations for this equation. By means of this group we find four-dimensional Lie algebras of the admitted operators of the equation in the cases of two cases of the free term and we find a three-dimensional Lie algebra for other nonequivalent specifications. For each algebra we find optimal systems of subalgebras and the corresponding invariant solutions or invariant submodels.

Keywords: nonlinear partial differential equation, nonlinear Black–Scholes equation, Schönbucher–Wilmott model, pricing options, group analysis, invariant solution.

UDC: 517.9

MSC: 58J70, 76M60, 91G99, 35A30

Received: 28.12.2015


 English version:
Ufa Mathematical Journal, 2017, 9:1, 29–40

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025