RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2019 Volume 11, Issue 1, Pages 113–119 (Mi ufa465)

On zeros of polynomial

Subhasis Das

Department of Mathematics, Kurseong College, Dow Hill Road, 734203, Kurseong, India

Abstract: For a given polynomial
\begin{equation*} P\left( z\right) =z^{n}+a_{n-1}z^{n-1}+a_{n-2}z^{n-2}+\cdots +a_{1}z+a_{0} \end{equation*}
with real or complex coefficients, the Cauchy bound
\begin{equation*} \left\vert z\right\vert <1+A,\qquad A=\underset{0\leqslant j\leqslant n-1}{ \max }\left\vert a_{j}\right\vert \end{equation*}
does not reflect the fact that for $A$ tending to zero, all the zeros of $P\left( z\right) $ approach the origin $z=0$. Moreover, Guggenheimer (1964) generalized the Cauchy bound by using a lacunary type polynomial
\begin{equation*} p\left( z\right) =z^{n}+a_{n-p}z^{n-p}+a_{n-p-1}z^{n-p-1}+\cdots +a_{1}z+a_{0}, \qquad 0<p<n\text{.} \end{equation*}
In this paper we obtain new results related with above facts. Our first result is the best possible. For the case as $A$ tends to zero, it reflects the fact that all the zeros of $P(z)$ approach the origin $z=0$; it also sharpens the result obtained by Guggenheimer. The rest of the related results concern zero-free bounds giving some important corollaries. In many cases the new bounds are much better than other well-known bounds.

Keywords: zeroes, region, Cauchy bound, Lacunary type polynomials.

UDC: 512.622.2

MSC: 30C15, 30C10, 26C10

Received: 30.08.2017

Language: English


 English version:
Ufa Mathematical Journal, 2019, 11:1, 114–120

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024