RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2019 Volume 11, Issue 4, Pages 35–40 (Mi ufa490)

Neumann boundary value problem for system of equations of non-equilibrium sorption

I. A. Kaliev, G. S. Sabitova

Sterlitamak Branch of Bashkir State University, Lenin av. 49, 453103, Sterlitamak, Russia

Abstract: Filtration of liquids and gases containing associated (dissolved, suspended) solids in porous media is accompanied by diffusion of these substances and mass transfer between the liquid (gas) and solid phases. In this work, we study the system of equations modeling the process of a non-equilibrium sorption. We prove an existence and uniqueness theorem for a multi-dimensional Neumann initial-boundary value problem in the Hölder classes of functions. We obtain a maximum principle, which plays an important role in the proof of the theorem. The uniqueness of the solution follows this principle. The existence of a solution to the problem is shown by Schauder fixed point theorem for a completely continuous operator; we describe a corresponding operator. We obtain estimates ensuring the complete continuity of the constructed operator and the mapping of some closed set of functions into itself over a small time interval. Then we obtain the estimates allowing us to continue the solution up to arbitrary finite time.

Keywords: modeling of process of non-equilibrium sorption, Neumann initial boundary value problem, global unique solvability.

UDC: 517.958

MSC: 35Q35, 76S05

Received: 07.08.2018


 English version:
Ufa Mathematical Journal, 2019, 11:4, 33–39

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024