RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2010 Volume 2, Issue 3, Pages 10–16 (Mi ufa58)

Asymptotic behavior of the variogramm at zero

V. A. Baikova, N. K. Bakirovb, A. A. Yakovleva

a UfaNIPI, Ufa, Russia
b Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia

Abstract: It is known, that the second derivative of the covariance function at zero plays a great role in topology and geometry of stationary random fields. Due to external information about a realization of a stochastic function, applied sciences face the problem of taking it into consideration, in particular, by specifying its power-mode behavior at zero. The given work suggests a model of a given asymptotic behavior.

Keywords: geostochastic modelling, the spectral theory of stationary random fields, Euler characteristic, fractal dimension.

UDC: 519.2

Received: 07.06.2010



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024