RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2023 Volume 15, Issue 1, Pages 3–21 (Mi ufa642)

This article is cited in 1 paper

On estimates for orders of best $M$-term approximations of multivariate functions in anisotropic Lorentz–Karamata spaces

G. A. Akishevab

a Institute of Mathematics and Mathematical Modelling, Pushkin str. 125, 050010, Almaty, Kazakhstan
b Kazakhstan branch of Lomonosov Moscow State University, Kazhymukan str. 11, 100008, Astana, Kazakhstan

Abstract: In the paper we consider a well-known class of weakly varying functions and by these functions we define an anisotropic Lorentz-Karamata space of $2\pi$-periodic functions of many variables. Particular cases of these spaces are anisotropic Lorentz-Zygmund and Lorentz spaces. In the anisotropic Lorentz-Karamata space we define an analogue of Nikolskii-Besov space. The main aim of the paper is to find sharp orders of best $M$-term trigonometric approximation of functions from Nikolskii-Besov space by the norm of another anisotropic Lorentz-Karamata space. In the paper we establish order sharp two-sided estimates of best $M$-term trigonometric approximations for the functions from the Nikolskii-Besov space in the anisotropic Lorentz-Karamata space in various metrics. In order to prove an upper bound for $M$-term approximations, we employ an idea of the greedy algorithms proposed by V.N. Temlyakov and we modify it for the anisotropic Lorentz-Karamata space.

Keywords: Lorentz-Karamata space, Nikolskii-Besov space, $M$–term approximation.

UDC: 517.51

MSC: 41A10, 41A25, 42A05

Received: 30.11.2021


 English version:
Ufa Mathematical Journal, 2023, 15:1, 1–20

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024