On Gelfand–Shilov spaces
A. V. Lutsenkoa,
I. Kh. Musinb,
R. S. Yulmukhametovba a Ufa University of Science and Technolgies, Zaki Validi str. 32, 450076, Ufa, Russia
b Institute of Mathematics, Ufa Federal Research Center, RAS, Chernyshevsky str. 112, 450077, Ufa, Russia
Abstract:
In this work we follow the scheme of constructing of Gelfand–Shilov spaces
$S_{\alpha}$ and
$S^{\beta}$ by means of some family of separately radial weight functions in
${\mathbb R}^n$ and define two spaces of rapidly decreasing infinitely differentiable functions in
${\mathbb R}^n$. One of them, namely, the space
${\mathcal S}_{\mathcal M}$ is an inductive limit of countable-normed spaces
\begin{equation*} {\mathcal S}_{\mathcal M_{\nu}} = \bigg\{f \in C^{\infty}({\mathbb{R}}^n): \Vert f \Vert_{m, \nu} = \sup_{x \in {\mathbb{R}}^n, \beta \in {\mathbb{Z}}_+^n, \atop \alpha \in {\mathbb{Z}}_+^n: \vert \alpha \vert \le m} \frac {\vert x^{\beta}(D^{\alpha}f)(x) \vert}{\mathcal M_{\nu}(\beta)} < \infty, m \in {\mathbb{Z}}_+ \bigg\}. \end{equation*}
Similarly, starting with the normed spaces
\begin{equation*} {\mathcal S}_m^{\mathcal M_{\nu}} =\bigg\{f \in C^{\infty}({\mathbb{R}}^n): \rho_{m, \nu}(f) = \sup_{x \in {\mathbb{R}}^n, \alpha \in {\mathbb{Z}}_+^n} \frac {(1+ \Vert x \Vert)^m \vert (D^{\alpha}f)(x) \vert}{\mathcal M_{\nu}(\alpha)} < \infty \bigg\} \end{equation*}
we introduce the space
${\mathcal S}^{\mathcal M}$. We show that under certain natural conditions on weight functions the Fourier transform establishes an isomorphism between spaces
${\mathcal S}_{\mathcal M}$ and
${\mathcal S}^{\mathcal M}$.
Keywords:
Gelfand–Shilov spaces, Fourier transform, convex functions.
UDC:
517.55
MSC: 46F05,
46A13,
42B10 Received: 31.03.2023