RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2011 Volume 3, Issue 1, Pages 94–102 (Mi ufa85)

This article is cited in 1 paper

On the growth of the maximum modulus of an entire function depending on the growth of its central index

P. V. Filevych

L'viv National University of Veterinary Medicine and Biotechnology, L'viv, Ukraine

Abstract: Let $h$ be a positive function continuous on $(0,+\infty)$, $f(z)=\sum_{n=0}^\infty a_nz^n$ be an entire function, and $M_f(r)=\max\{|f(z)|\colon|z|=r\}$, $\mu_f(r)=\max\{|a_n|r^n\colon n\ge0\}$, and $\nu_f(r)=\max\{n\ge0\colon|a_n|r^n=\mu_f(r)\}$ be the maximum modulus, the maximal term, and the central index of the function $f$, respectively. We establish necessary and sufficient conditions for the growth of $\nu_f(r)$ under which $M_f(r)=O(\mu_f(r)h(\ln\mu_f(r)))$, $r\to+\infty$.

Keywords: entire function, maximum modulus, maximal term, central index, order, lower order.

UDC: 517.53

Received: 29.11.2010


 English version:
Ufa Mathematical Journal, 2011, 3:1, 92–100 (PDF, 376 kB)

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024