RUS  ENG
Full version
JOURNALS // Uspekhi Fizicheskikh Nauk // Archive

UFN, 2015 Volume 185, Number 1, Pages 3–34 (Mi ufn5058)

This article is cited in 60 papers

REVIEWS OF TOPICAL PROBLEMS

Current progress in developing the nonlinear ionization theory of atoms and ions

B. M. Karnakova, V. D. Mura, S. V. Popruzhenkoa, V. S. Popovb

a National Research Nuclear University `MEPhI', Moscow
b Russian Federation State Scientific Center `Alikhanov Institute of Theoretical and Experimental Physics', Moscow

Abstract: We review the status of the theory of ionization of atoms and ions by intense laser radiation (Keldysh's theory). We discuss the applicability of the theory, its relation to the Landau–Dykhne method, and its application to the ionization of atoms by ultrashort nonmonochromatic laser pulses of an arbitrary shape. The semiclassical imaginary time method is applied to describe electron sub-barrier motion using classical equations of motion with an imaginary time $t\to \text{i}t$ for an electron in the field of an electromagnetic wave. We also discuss tunneling interference of transition amplitudes, a phenomenon occurring due to the existence of several saddle points in the complex time plane and leading to fast oscillations in the momentum distribution of photoelectrons. Nonperturbatively taking the Coulomb interaction between an outgoing electron and the atomic residual into account causes significant changes in the photoelectron momentum distribution and in the level ionization rates, the latter usually increasing by orders of magnitude for both tunneling and multiquantum ionization. The effect of a static magnetic field on the ionization rate and the magnetic cumulation process is examined. The theory of relativistic tunneling is discussed, relativistic and spin corrections to the ionization rate are calculated, and the applicability limits of the nonrelativistic Keldysh theory are determined. Finally, the application of the Fock method to the covariant description of nonlinear ionization in the relativistic regime is discussed.

PACS: 03.65.Sq, 32.80.Fb, 32.80.Rm, 32.80.Wr, 34.80.Qb

Received: July 11, 2014
Revised: October 4, 2014
Accepted: July 15, 2014

DOI: 10.3367/UFNr.0185.201501b.0003


 English version:
Physics–Uspekhi, 2015, 58:1, 3–32

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024