Abstract:
Graphite-like (metal!) regions and diamond-like (dielectric!) regions in carbon nanostructures are very closely spaced. Based on this unique feature, a model of thermal emfproduced due to the drag of electrons by ballistic phonons is developed and a model of thermal conduction during heat transfer through the graphite-like/diamond-like region interface is proposed. Experiments with a thermoelectric generator based on film carbon nanostructures are analyzed. Models of a thermoelectric generator based on a composite of a graphite-like matrix containing diamond nanoparticles and graphene impurities are proposed. These models both demonstrate the above-mentioned phenomena and predict the achievement of the maximum thermoelectric conversion efficiency.
Keywords:thermoelectric generator, electron–phonon interaction, carbon nanostructures, ballistic phonon drag of electrons, graphite-like region, diamond-like region, heat transfer through the graphite-like/diamond-like region interface, composite of a graphite-like matrix with inclusions of diamond nanoparticles, graphene, thermoelectric generator efficiency.