RUS  ENG
Full version
JOURNALS // Ural Mathematical Journal // Archive

Ural Math. J., 2020 Volume 6, Issue 1, Pages 16–29 (Mi umj108)

Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm

Gabdolla Akishevab

a L.N. Gumilyov Eurasian National University
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: In this paper, we consider the anisotropic Lorentz space $L_{\bar{p}, \bar\theta}^{*}(\mathbb{I}^{m})$ of periodic functions of $m$ variables. The Besov space $B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}$ of functions with logarithmic smoothness is defined. The aim of the paper is to find an exact order of the best approximation of functions from the class $B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}$ by trigonometric polynomials under different relations between the parameters $\bar{p}, \bar\theta,$ and $\tau$.
The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition for a function $f\in L_{\bar{p}, \bar\theta^{(1)}}^{*}(\mathbb{I}^{m})$ to belong to the space $L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})$ in the case $1{<\theta^{2}<\theta_{j}^{(1)}},$ ${j=1,\ldots,m},$ in terms of the best approximation and prove its unimprovability on the class $E_{\bar{p},\bar{\theta}}^{\lambda}=\{f\in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})\colon {E_{n}(f)_{\bar{p},\bar{\theta}}\leq\lambda_{n},}$ ${n=0,1,\ldots\},}$ where $E_{n}(f)_{\bar{p},\bar{\theta}}$ is the best approximation of the function $f \in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})$ by trigonometric polynomials of order $n$ in each variable $x_{j},$ $j=1,\ldots,m,$ and $\lambda=\{\lambda_{n}\}$ is a sequence of positive numbers $\lambda_{n}\downarrow0$ as $n\to+\infty$. In the second section, we establish order-exact estimates for the best approximation of functions from the class $B_{\bar{p}, \bar\theta^{(1)}}^{(0, \alpha, \tau)}$ in the space $L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})$.

Keywords: Lorentz space, Nikol'skii-Besov class, best approximation.

Language: English

DOI: 10.15826/umj.2020.1.002



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025