RUS  ENG
Full version
JOURNALS // Ural Mathematical Journal // Archive

Ural Math. J., 2020 Volume 6, Issue 1, Pages 130–136 (Mi umj116)

The dynamic deformation of three-component porous media

Victor S. Polenov, Lyubov A. Kukarskikh, Dmitry A. Nitsak

Air Force Academy named after Professor N. E. Zhukovsky and Y. A. Gagarin

Abstract: A mathematical model of the dynamic deformation of three-component elastic media saturated with liquid and gas, given by elastic moduli and coefficients characterizing the porosity and compressibility of the liquid and gas, is considered. Formulas for determining the propagation velocity of monochromatic waves in ternary porous media are obtained. The existence of three longitudinal waves depends on the discriminant of a cubic equation and the velocity ratio.

Keywords: Elasticity, Medium, Fluid, Stress, Deformation, Displacement.

Language: English

DOI: 10.15826/umj.2020.1.010



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024