RUS  ENG
Full version
JOURNALS // Ural Mathematical Journal // Archive

Ural Math. J., 2024 Volume 10, Issue 2, Pages 131–143 (Mi umj240)

Integral analogue of Turán-type inequalities concerning the polar derivative of a polynomial

Mayanglambam Singhajit Singh, Barchand Chanam

National Institute of Technology Manipur

Abstract: If $w(\zeta)$ is a polynomial of degree $n$ with all its zeros in $|\zeta|\leq \Delta,$ $\Delta\geq 1$ and any real $\gamma\geq 1$, Aziz
proved the integral inequality [1]

\begin{equation*} \left\lbrace\int_{0}^{2\pi}\left|1+\Delta^ne^{i\theta}\right|^{\gamma}d\theta\right\rbrace^{{1}/{\gamma}}\max_{|\zeta|=1}|w^{\prime}(\zeta)|\geq n\left\lbrace\int_{0}^{2\pi}\left|w\left(e^{i\theta}\right)\right|^{\gamma}d\theta\right\rbrace^{{1}/{\gamma}}. \end{equation*}

In this article, we establish a refined extension of the above integral inequality by using the polar derivative instead of the ordinary derivative consisting of the leading coefficient and the constant term of the polynomial. Besides, our result also yields other intriguing inequalities as special cases.

Keywords: Polar derivative, Turán-type inequalities, Integral inequalities

Language: English

DOI: 10.15826/umj.2024.2.012



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025