RUS  ENG
Full version
JOURNALS // Ural Mathematical Journal // Archive

Ural Math. J., 2017 Volume 3, Issue 2, Pages 40–45 (Mi umj41)

This article is cited in 3 papers

On the best approximation of the infinitesimal generator of a contraction semigroup in a Hilbert space

Elena E. Berdyshevaa, Maria A. Filatovabc

a Mathematisches Institut, Justus Liebig Universität Giessen
b Ural Federal University, Ekaterinburg
c Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: Let $A$ be the infinitesimal generator of a strongly continuous contraction semigroup in a Hilbert space $H$. We give an upper estimate for the best approximation of the operator $A$ by bounded linear operators with a prescribed norm in the space $H$ on the class $Q_2 = \{x\in \mathcal{D}(A^2) : \|A^2 x\| \leq 1\}$, where $\mathcal D(A^2)$ denotes the domain of $A^2$.

Keywords: Contraction semigroup, Infinitesimal generator, Stechkin's problem.

Language: English

DOI: 10.15826/umj.2017.2.006



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024