RUS  ENG
Full version
JOURNALS // Ural Mathematical Journal // Archive

Ural Math. J., 2019 Volume 5, Issue 1, Pages 53–58 (Mi umj74)

Jacobi transform of $(\nu, \gamma, p)$-Jacobi-Lipschitz functions in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)$

Mohamed El Hammaa, Hamad Sidi Lafdalb, Nisrine Djellaba, Chaimaa Khalila

a Laboratoire TAGMD, Faculté des Sciences Aїn Chock, Université Hassan II
b CRMEF, Laayoune, Morocco

Abstract: Using a generalized translation operator, we obtain an analog of Younis' theorem [Theorem 5.2, Younis M. S. Fourier transforms of Dini–Lipschitz functions, Int. J. Math. Math. Sci., 1986] for the Jacobi transform for functions from the $(\nu, \gamma, p)$-Jacobi–Lipschitz class in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t)dt)$.

Keywords: Jacobi operator, Jacobi transform, Generalized translation operator.

Language: English

DOI: 10.15826/umj.2019.1.006



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024