RUS  ENG
Full version
JOURNALS // Proceedings of the Yerevan State University, series Physical and Mathematical Sciences // Archive

Proceedings of the YSU, Physical and Mathematical Sciences, 2012 Issue 3, Pages 29–33 (Mi uzeru145)

Mathematics

On degenerate nonself-adjoint differential equations of fourth order

L. P. Tepoyan, H. S. Grigoryan

Chair of Differential Equations YSU, Armenia

Abstract: We consider the degenerate nonself-adjoint differential equation of fourth order $Lu\equiv(t^{\alpha}u^{\prime\prime})^{\prime\prime}+au^{\prime\prime\prime}-pu^{\prime}+qu=f$ where $t\in(0, b), \ 0\leq\alpha\leq 2, \alpha\neq 1, a, p, q $ are the constant numbers and $a\neq0, p>0, f\in L_2(0, b)$. We prove that the statement of the Dirichlet problem for the above equation depends on the sign of the number $a$ (Keldysh Teorem).

Keywords: Dirichlet problem, degenerate equations, weighted Sobolev spaces, spectral theory of linear operators.

Received: 20.08.2012
Accepted: 25.09.2012

Language: English



© Steklov Math. Inst. of RAS, 2024