RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2012 Volume 154, Book 3, Pages 121–128 (Mi uzku1144)

On the Partial Sums of the Fourier Series of Functions of Bounded Variation

L. D. Gogoladze, V. Sh. Tsagareishvili

Tbilisi Ivane Javakhishvili State University

Abstract: S. Banach [Sur la divergence des séries orthogonales. Studia Math., 1940, vol. 9, pp. 139–155] proved that for any function $f(x)\in L_2(I)$ $(I=[0,1]$, $f(x)\not\sim 0)$ there exists an orthonormal system (ONS) $(\varphi_n(x))$ such that $\varlimsup\limits_{n\to \infty} |S_n(f,x)|=+\infty$ almost everywhere on $I$, where $S_n(f,x)$ are the partial sums of the Fourier series of a function $f(x)$ with respect to the system $(\varphi_n(x))=\Phi$.
This paper finds necessary and sufficient conditions which should be satisfied by ONS so that the partial sums of the Fourier series of functions with finite variation be uniformly bounded on $I$.

Keywords: bounded variation, partial sums, subsystem.

UDC: 517.521

Received: 15.03.2012



© Steklov Math. Inst. of RAS, 2024