RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2012 Volume 154, Book 3, Pages 145–157 (Mi uzku1146)

Solution of a $\mathbb R$-Linear Conjugation Problem for a Parallel-Layered Medium in the Class of Piecewise Meromorphic Functions

A. Yu. Kazarin

Kazan (Volga Region) Federal University

Abstract: The problem of $\mathbb R$-linear conjugation for parallel-layered $(n+1)$-phase media is solved in the class of piecewise meromorphic functions with given principal parts. The solution is written as a left-sided Fourier integral with a known original. In addition, some sufficient conditions under which the Fourier integral can be represented as an absolutely convergent series are obtained.

Keywords: parallel-layered media, $\mathbb R$-linear conjugation problem, heterogeneous structures, Milne-Thomson theorem, piecewise meromorphic functions.

UDC: 517.53+532.546

Received: 18.04.2012



© Steklov Math. Inst. of RAS, 2024