RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2013 Volume 155, Book 3, Pages 91–104 (Mi uzku1218)

This article is cited in 2 papers

Computation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem

V. S. Zheltukhina, S. I. Solov'evb, P. S. Solov'evc, V. Yu. Chebakovaa

a Institute of Computer Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Kazan, Russia
b Institute of Computer Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Kazan, Russia
c Kazan (Volga Region) Federal University, Kazan, Russia

Abstract: We derive a condition for the existence of the minimal eigenvalue answering the positive eigenfunction of the nonlinear eigenvalue problem for an ordinary differential equation. This problem is approximated by a mesh scheme of the finite element method. The convergence of the approximate solutions to the exact ones is investigated. The theoretical results are illustrated by numerical experiments for a model problem.

Keywords: eigenvalue, positive eigenfunction, nonlinear eigenvalue problem, ordinary differential equation, Sturm–Liouville problem, finite element method.

UDC: 519.63

Received: 22.05.2013



© Steklov Math. Inst. of RAS, 2024