Abstract:
Wave processes in a porous medium saturated with bubbly liquid are numerically investigated. The nonlinearity of gas constitutive and Rayleigh–Lamb equations for bubble oscillations is taken into account. The dispersion dependencies of linear waves are obtained. The influence of the porous medium and bubbly liquid parameters on the velocity and attenuation of deformational and filtrational waves is analyzed. The propagation of the step wave from liquid to the porous medium saturated with bubbly liquid is investigated. The influence of the medium and initial pulse parameters on wave evolution is studied. The calculation results are in good agreement with the experimental data of other researchers.