RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2015 Volume 157, Book 2, Pages 40–54 (Mi uzku1305)

This article is cited in 1 paper

Approximation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem

V. S. Zheltukhina, S. I. Solov'evb, P. S. Solov'evc

a Kazan National Research Technological University, Kazan, Russia
b Kazan (Volga Region) Federal University, Kazan, Russia
c Kazan (Volga Region) Federal University, Kazan, Russia

Abstract: Properties of the minimal eigenvalue corresponding to the positive eigenfunction of a nonlinear eigenvalue problem for an ordinary differential equation are studied. This problem is approximated by a mesh scheme of the finite element method. The error of approximate solutions is investigated. Theoretical results are illustrated by numerical experiments for a model eigenvalue problem.

Keywords: eigenvalue, positive eigenfunction, nonlinear eigenvalue problem, ordinary differential equation, Sturm–Liouville problem, finite element method.

UDC: 519.63

Received: 06.04.2015



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024