RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2016 Volume 158, Book 4, Pages 469–481 (Mi uzku1380)

This article is cited in 2 papers

Polynomials generating maximal real subfields of circular fields

I. G. Galyautdinova, E. E. Lavrentyevab

a Volga State University of Telecommunications and Informatics, Kazan Branch, Kazan, 420061 Russia
b Kazan Federal University, Kazan, 420008 Russia

Abstract: We have constructed recurrence formulas for polynomials $q_n(x)\in\mathbb Q[x]$, any root of which generates the maximal real subfield of circular field $K_{2n}$. It has been shown that all real subfields of fixed field $K_{2n}$ can be described by using polynomial $q_n(x)$ and its Galois group. Furthermore, a methodology has been developed for presentation of square radical $\sqrt d$, $d\in\mathbb N$, $d>1$ in the form of a polynomial with rational coefficients relative to $2\cos(\pi/n)$ at the corresponding $n$. The theoretical results have been verified by a number of examples.

Keywords: algebraic number, minimal polynomial, circular fields and their subfields, Galois group.

UDC: 511.61

Received: 15.02.2016



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025