RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2025 Volume 167, Book 1, Pages 5–15 (Mi uzku1692)

Approximations of solutions for a class of conditionally well-posed integro-differential equations

J. R. Agachev, M. Yu. Pershagin

Kazan Federal University, Kazan, Russia

Abstract: In this article, for a specific class of conditionally well-posed integro-differential equations in a novel pair of weighted Sobolev spaces, an alternative method for constructing approximations (particularly finite-dimensional ones) to the solution of the corresponding boundary value problem is proposed, and its theoretical justification is provided for minimal differential properties of the coefficients of the equation.

Keywords: weighted Sobolev space, integro-differential equation, direct method, projection method, convergence.

UDC: 517.51: 517.968.7: 519.642.2

Received: 18.09.2024
Accepted: 24.12.2024

DOI: 10.26907/2541-7746.2025.1.5-15



© Steklov Math. Inst. of RAS, 2025