RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 2005 Volume 147, Book 1, Pages 148–153 (Mi uzku487)

On infinitesimal automorphisms of almost symplectic structures

V. I. Panzhenskij

Penza State Pedagogical University

Abstract: On the tangent bundle $TM$ of a manifold $M$ endowed with an almost symplectic structure $\omega$ and a linear connection $\nabla$ compatible with $\omega$, we consider the Riemannian metric $G$ which is Hermitian with respect to the canonical almost complex structure $J$ and the corresponding almost symplectic structure $\Omega$. We study the infinitesimal automorphisms of these structures on $TM$, and, in particular, prove that the dimension of the Lie algebra of natural automorphisms of $G$ and of $\Omega$ is less than or equal to $n(n+3)/2$.

UDC: 514.16

Received: 25.12.2004



© Steklov Math. Inst. of RAS, 2025