RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 2009 Volume 151, Book 2, Pages 25–35 (Mi uzku742)

This article is cited in 14 papers

The XV International Conference "Problems of Theoretical Cybernetics"

On Reliability of Combinatorial Circuits in Bases Containing Functions with at Most Three Variables

M. A. Alekhina, A. V. Vasin

Penza State University

Abstract: We consider the realization of Boolean functions by combinatorial circuits with gates realizing functions from a complete basis $B$, containing functions with at most three variables. We assume that gates can have inverse faults on the outputs independently with the probability $\varepsilon$ ($\varepsilon\in(0;1/2)$). We describe a set $G$ of Boolean functions depending essentially on three variables, and prove that for almost all Boolean functions the unreliability of asymptotically optimal circuits is asymptotically equal to $\varepsilon$ (when $\varepsilon$ tends to 0) if and only if $G\cap B\ne\emptyset$.

Keywords: unreliable functional gates, optimal combinatorial circuits, inverse faults, realization of Boolean functions by combinatorial circuits with unreliable functional gates, synthesis of reliable circuits.

UDC: 519.95

Received: 25.03.2009



© Steklov Math. Inst. of RAS, 2024