RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 2009 Volume 151, Book 2, Pages 98–106 (Mi uzku750)

This article is cited in 2 papers

The XV International Conference "Problems of Theoretical Cybernetics"

On Multiplexer Function Complexity in the $\pi$-schemes Class

S. A. Lozhkin, N. V. Vlasov

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Abstract: It is proven that $n$-th's order multiplexer realization complexity in $\pi$-schemes class is equal to $2^{n+1}+\frac{2^n}n\pm O(\frac{2^n}{n\log n})$ and, thus, the so-called high-accuracy asymptotic bounds for the stated complexity are established for the first time.

Keywords: multiplexer function, complexity, parallel-consecutive scheme, high-accuracy asymptotic bounds.

UDC: 519.714

Received: 17.03.2009



© Steklov Math. Inst. of RAS, 2025