RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2011 Volume 153, Book 1, Pages 195–210 (Mi uzku915)

This article is cited in 3 papers

Large deviations in the central limit theorem for endomorphisms of Euclidean space

V. T. Dubrovin

Kazan (Volga Region) Federal University

Abstract: Let $W$ be such a nonsingular integer matrix that $|\operatorname{det}W|>1$; $f$ is a real-valued periodic for every argument Lipschitz-continuous function defined on the unit hypercube from $R^d$. For a sequence $(f(tW^n))$, we prove the central limit theorem with large deviations within the interval $[1;\mathrm o(n^{1/8}/\ln n)]$.

Keywords: limit theorem, endomorphisms, large deviations.

UDC: 519.21

Received: 06.09.2010



© Steklov Math. Inst. of RAS, 2025