RUS  ENG
Full version
JOURNALS // Vestnik of Astrakhan State Technical University. Series: Management, Computer Sciences and Informatics // Archive

Vestn. Astrakhan State Technical Univ. Ser. Management, Computer Sciences and Informatics, 2019 Number 4, Pages 70–80 (Mi vagtu602)

This article is cited in 1 paper

COMPUTER SOFTWARE AND COMPUTING EQUIPMENT

Numerical calculation of nonstationary fractional differential equation in problems of modeling toxic substances distribution in ground waters

A. A. Afanasyeva, T. N. Shvetsova-Shilovskaya, D. E. Ivanov, D. I. Nazarenko, E. V. Kazarezova

State Research Institute îf Organic Chemistry and Technology, Moscow, Russian Federation

Abstract: At present, the theory of fractional calculus is widely used in many fields of science for modeling various processes. Differential equations with fractional derivatives are used to model the migration of pollutants in porous inhomogeneous media and allow a more correct description of the behavior of pollutants at large distances from the source. The analytical solution of differential equations with fractional order derivatives is often very complicated or even impossible. There has been proposed a numerical method for solving fractional differential equations in partial derivatives with respect to time to describe the migration of pollutants in groundwater. An implicit difference scheme is developed for the numerical solution of a non-stationary fractional differential equation, which is an analogue of the well-known implicit Crank–Nicholson difference scheme. The system of difference equations is presented in matrix form. The solution of the problem is reduced to the multiple solution of a tridiagonal system of linear algebraic equations by the tridiagonal matrix algorithm. The results of evaluating the spread of pollutant in groundwater based on the numerical method for model examples are presented. The concentrations of the substance obtained on the basis of the analytical and numerical solutions of the unsteady one-dimensional fractional differential equation are compared. The results obtained using the proposed method and on the basis of the well-known analytical solution of the fractional differential equation are in fairly good agreement with each other. The relative error is on average 9%. In contrast to the well-known analytical solution, the developed numerical method can be used to model the spread of pollutants in groundwater, taking into account their biodegradation.

Keywords: fractional derivative, time derivative, fractional differential equation, difference scheme, groundwater.

UDC: 504.054

Received: 28.08.2019

DOI: 10.24143/2072-9502-2019-4-70-80



© Steklov Math. Inst. of RAS, 2024